
Just Logic

Introduction

Just Logic is a Unity extension with the visual programming functionality. With JL you can create the logic

for the game right in the inspector. Just Logic can access other scripts and objects and use any other plug-

ins and dll libraries.

Platforms

Standalone, Web Player, iOS and Android are target platforms. Other platforms possibly can run JustLogic

but it’s not guaranteed.

Installation

Import JustLogic.unitypackage using “Assets/Import Package/Custom Package” menu.

Be aware that sometimes Unity behaves unstable when importing the package. This is a known issue. It’s

related to the “First Person Controller.prefab” (used in the Tutorials) inside Standard Assets. It should be ok

after the editor restart. It’s no connected to the JustLogic itself so if you have this issue please report this

crash to the Unity support.

Units

To make a new JL Script, create a new game object (Game Object / Create

Empty) and add to it the component JL Script (by pressing the button “Add

Component” inspector and entering the component name in the search

box).

The script is composed of units - actions and expressions.

Each unit has its own settings called parameters. Usually parameter values

- the arguments – are evaluated first before running the action itself. The

inspector shows optional parameters in square brackets.

An expression differs from an action: it has returning value - the result of

its work. This value can be immediately used as an argument for another

unit.

Examples of actions: move the object, load level, slow down time.

Examples of expressions: find the main camera, compare two numbers, get the length of the string.

 Action Expression

Returns value - +

Parameters may contain another action + -

Parameters may contain another expression + +

Can be yielded (timers) + -

Before launching the script the conditions check runs.

They are specified in the inspector Conditions list. The

script will not be started until all conditions are met.

Each condition is an expression that returns a value of

type bool (“yes/no” — True/False). When all the

conditions have returned True, the execution of the

script begins.

Actions are specified in the Actions list and executed

sequentially from top to bottom. The sequence of actions may be combined with the Sequence unit.

Hint: check box at the left corner of the action name disables the unit so it is not executed.

To replace an expression or action with another type, click on its name and select an appropriate option in

the “Select Unit” window (for convenience, it can be docked in the editor). If the correct expression is not

listed, perhaps it does not match the type of the parameter whose value you are setting.

Hint: the unit can be copied by selecting an appropriate menu item from the unit context menu (opens with

right-click).

Actions are not available to be used as expression parameters. Mathematically speaking, an expression is a

function that takes parameters. Each parameter can be a constant or another function and it must be

specified. An action does not return a value, so it cannot be passed in the parameter.

If you want to execute an expression without using a return value (as if it were an action), it should be

packed into a special Evaluate action.

Events

A script cannot be run by itself. Usually it is started by a specific event handler. Each handler has its own

defined list of conditions that allows instant checking of the triggered event parameters.

General procedure for running the script looks like:

1. An event handler is being triggered

2. Checking the event handler conditions

3. Triggering a script

4. Checking the script conditions

5. Executing the script actions

Event handler is a component (“JL Event Handler”), which

can be added to the same game object to which the

triggering script is added or to any other game object in the

scene.

Parameter “Event” specifies the event when the handler

will be triggered.

Learn more about Unity events at http://docs.unity3d.com/Documentation/Manual/EventFunctions.html

http://docs.unity3d.com/Documentation/Manual/EventFunctions.html

Documentation on all Unity events is here

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

The list of expressions “JLScripts” specifies scripts which must be triggered.

The list “Conditions” specifies the conditions of the

handler. Only if all the conditions are met, the script

will be executed. It's recommended to debug the

script without specifying the conditions, and add them

only after making sure the script works as expected.

The Event parameter (like other in OnCollisionTrigger

event) can be compared with any value using the

expression “Event / Compare Event Argument”.

Expression: Compare

The expression is intended to compare two values.

Returns bool value: True or False.

This expression differs from the mentioned

“Compare Event Argument” only in that its

“Operand1” is available for editing.

Where possible, the type conversion is automatic. For an example you can compare Game Object and

Component on this or another Game Object.

Returning value bool

Parameters “Operand1” and “Operand2” Two compared operands (expressions).

Parameter “Operator” The comparison type: equality, inequality, greater

than, smaller than, greater or equal, smaller or

equal.

Action: Branch / If

If accepts bool argument and depending on its value executes one of two actions.

Hint: use “Branch / Sequence” action to combine a list of actions into one.

Parameters:

Value bool expression,

Then action is executed if “Value” equals True,

Else action, is executed if “Value” equals False.

Expressions group: Logical

The following units are designed to compare the arguments of the bool type (True or False). The result of

comparison returns as a bool value.

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.html

The expressions below return True in case that

And all argument values equal True or they are not specified,

Or at least one argument value equals True,

Xor only one argument value equals True,

Not the argument value equals False (inverted value).

In other cases these expressions return False.

Expression IIf is similar to action If, but it executes one of the two expressions depending on the bool Value.

Variables

Variables allow temporary storage of some data. You can store a

value to use it later in your script. “Variable / Set” writes data

into the variable and “Variable / Get” reads them.

Hint: Variable / Set is an expression so just stored value can be

immediately passed to another unit as an argument.

In addition to the usual variables that hold a value only during

the execution of a script, there are another two types of

variables:

 Static variables retain their value after the execution of a script, and can be read at its next start.

The inspector displays the name of a static variable in square brackets.

 Global variables work in the same manner, but they are shared between all scripts at once. They

can help you transfer data to other scripts.

To check whether a variable contains a value, use bool-expression Variable / Is Set.

Setting an expression as a value of a variable it is possible to delay the calculation of expression until the

variable is read. To use this option, make sure “Delegate” check box (in “Variable / Set”) is on. Every time

you read a variable the expression will be evaluated again. Note that this option has no effect for global

variables.

The stored numeric value of a variable can be increased or decreased by one with the

“Variable / Increment” and “Variable / Decrement” expressions respectively. These expressions return the

new value of a variable.

Actions group: Time

 “SetTimeScale” unit determines the speed of the game time (default is 1).

The rest of actions in this group add possibility to pause the script for a while:

Wait for game time waiting for a game time (specified in seconds),

Wait for real time waiting for real time (specified in seconds),

Wait for next frame waiting for the next Update event,

Wait for next fixed update frame waiting for the next FixedUpdate event.

Units group: External

Units of this group are designed to appeal to other scripts and plugins.

Action “TriggerScript” starts the specified JL Script (independently, as it’s triggered by an event handler). In

this case, the current script will be continued even if the started script yields (Wait For ...).

Action “Call JL Script (scene or prefab)” differs from the previous one in that it runs only actions of the

target script (ignoring conditions). The current script does not continue until the called script is completed

(for example, in the case of using yield timers). Check of the target script conditions is not executed.

Action “Call JL Script (asset)” allows execution of a script that is stored in the form of an asset. This script is

stored out of the scene and can be called from several different scenes. To create a script of such type, use

the menu “Assets / Create / Just Logic Script”.

Similarly, the expression “Call Expression (asset)” allows running an expression that is stored in the form of

an asset (created with menu “Assets / Create / Just Logic Expression”). The return value can be used in the

current script.

Expression “Call Expression (scene or prefab)” launches an expression that is stored in the scene

(JL Expression component).

Expression “Invoke” allows calling any method of the specified object. You can also specify a type and call

the static method on it (such methods in the list have

square brackets around the arguments.)

Action “SendMessage” calls a method on a specified

object or a script. Learn more about SendMessage at:

http://docs.unity3d.com/Documentation/ScriptReference

/Component.SendMessage.html

Units group: Branch

Return Stops the current script execution (will not return to the caller script if called in

JL Script).

Return Script Stop the current JL Script execution and returns to its caller.

Noop Does nothing.

If Executes an action depending of the value of an expression.

IIf Returns one of the two values depending of the value of an expression.

Sequence Executes specified sequence of actions.

Evalute Expression Executes an expression.

http://docs.unity3d.com/Documentation/ScriptReference/Component.SendMessage.html
http://docs.unity3d.com/Documentation/ScriptReference/Component.SendMessage.html

Exception group Units for exception handling.

Actions group: Loop

Units of this group perform a specified action repeatedly.

SimpleFor Executes an action specified number of times.

For Executes an action, while setting the value of an expression from “From” till “To”

arguments.

ForEach Executes an action while setting filling the specified variable value with elements of the

specified list.

While Executes an action while all the specified conditions are met.

Continue Jumps to the next loop iteration (inside sequences)

Break Stops an execution of the current loop

Other units

The purposes of the units which were not described here match their name. Normally, Unity

documentation describes the function with the same name as that of the unit. For information about such

functions please visit the Unity documentation: http://docs.unity3d.com/

Units group Descriptions

Value Expressions used for setting constant values, as opposed to their calculation during the

script execution.

Generating units

You can easily generate units for any class

to use in JustLogic. For an example, let’s

generate units for the Unity

“Achievements” class. Afterwise, you can

use them like any other standard JL units.

With the same way you can create units for

any asset (like NGUI).

http://docs.unity3d.com/

You can also specify advanced parameters like class name prefix and exclude conditions:

Everything is ready, let’s press “Generate”. And what will you see?..

You may want to rename, tweak, or remove some of them. They are editable like any other cs files.

To avoid crashes remember: it’s necessary that each unit class has the same name as its file name.

Source code

Some parts of the asset are accessible in the form of a source code.

 Units are merged into the main JustLogic.dll assembly.

You can found the source code archive in the JustLogic\SourceCode\JustLogicUnitsSourceCode.zip

 Editor source code with some of standard drawers: JustLogic\Editor\Code

Compiling units dll

You may want to precompile your units into a dll assembly (to speed up the compilation) or make some

changes to the standard units source code. You don't need to do this operation if you create units directly

inside your Unity project. You also shouldn’t merge in-editor assemblies (but note that if you inherit Unity

Editor classes (not JL drawers) from another dll (like JustLogicCoreEditor.dll) you also need to inherit your

classes in Unity project, otherwise they may not become recognized).

In Unity you can’t split your scriptable objects from one dll in two or more separate dlls without losing

script references. For compatibility causes it’s recommended that all units are merged into one big

JustLogic.dll assembly.

This instruction is not about using MonoDevelop or Visual Studio to create a new dll project for Unity.

Please learn your favorite IDE from its own documentation and community.

You can find the original JustLogic.dll assembly without standard units in the source code archive. Your

assembly may (and is supposed to) reference that JustLogic.dll. After build you can use IL Merge for

Windows or alternatives for Mac to merge all the dlls into JustLogic.dll.

On Windows I use a post build cmd file. Assume you have your Unity project at path “D:\Project” (and

Assets folder at “D:\Project\Assets”).

1. Place all the dlls (original JustLogic.dll, YourCompiled.dll, YourCompiled2.dll, …) to the “D:\Project\

Assets\JustLogic\Plugins” folder. Note that it should not contain UnityEngine.dll or UnityEditor.dll

otherwise Unity will not compile your project.

2. Place the ILMerge.exe, your UnityEngine.dll and UnityEditor.dll from “c:\Program Files

(x86)\Unity\Editor\Data\Managed\” to the “D:\Project” directory.

3. Create “D:\Project\merge.cmd”:

cd Assets\JustLogic\Plugins

rmdir Merged /S /Q

mkdir Merged

..\..\..\ILMerge /out:Merged\JustLogic.dll *.dll /lib:..\..\..\ /xmldocs /wildcards

@if %errorlevel% neq 0 pause

del *.dll

del *.xml

xcopy Merged* Merged\.. /E /Y

rmdir Merged /S /Q

pause

It creates a new Merged folder for output dll, runs ILMerge with all the dlls in the Plugins folder,

clears Plugins folder and copies output from Merged back to the Plugins. Than temporary Merged

folder will be removed.

If you can’t copy the text from this document, see JustLogic\SourceCode\merge_cmd.txt.

4. Launch it. All done.

It should be easy to do the same procedure using IL Merge alternatives for Mono.

http://www.microsoft.com/en-us/download/details.aspx?id=17630
http://stackoverflow.com/questions/3655838/is-there-a-ilmerge-equivalent-tool-for-mono

Tips

 Always pay attention to the Console. Even though everything works fine, the console may contain

useful information.

 Be careful with object references (ObjectValue)! If you pass a destroyed or missing object to an

expression, most likely, the exception will be thrown and the execution of the whole script will

stop. All exceptions appear in the Console.

 Some items may go self-destructed over time. To detect such objects, watch your script in the

inspector while testing the game.

 While testing, you can manually run the script from the inspector. To do this, right-click on the

script header in the inspector and select “Start Execution” from the context menu.

 Read the Unity documentation, including the Scripting section. With the help of the “Invoke”

expression you can use any of the Unity functions. Only the method of script creating is different

but the functionality is the same.

Author: Vlad Taranov

Skype: vbprogr

YouTube channel: http://www.youtube.com/user/aqlasolutions

More at http://www.aqla.net

http://www.youtube.com/user/aqlasolutions
http://www.aqla.net/

